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A numerical method based on the vortex methodology is presented for unsteady solution of the aerodynamics
coefficients of a thin profile in subsonic and supersonic compressible flows. The numerical model is made through the
airfoil discretization in uniform segments, and the singularity used is a vortex in compressible flow. Results for the
proposed model are presented as the lift and pressure coefficients along the profile chord for some instants of time.
The indicial response (unit step function) of the profile is obtained numerically. The method is also compared with

solutions available in the literature.

Nomenclature
as, = sound speed, m/s
cp = dimensionless pressure coefficient
M = dimensionless Mach number
t = time,s
U = uniform velocity, m/s
w = induced velocity, m/s
o = angle of attack, rad
r = vorticity, m?/s
Ac, = dimensionless pressure coefficient jump
8¢ = velocity potential jump, m?/s
) = velocity potential, m?/s
Subscript
0 = initial instant

Introduction

HIS paper reports on the study of the arbitrary motion of a two-
dimensional thin airfoil in an otherwise subsonic or supersonic
undisturbed stream. A simple and efficient numerical method based
on point vortices is presented. The main limitation of the proposed
procedure is that the mathematical modeling corresponds to the two-
dimensional potential linearized equations. The basis of the proposed
numerical procedure relies on the direct relationship between
vortices and normal dipole panels with constant strength distribution.
It is well known that linearized compressible aerodynamics and
linearized acoustic equations can be derived from one another.
Therefore, if a Galilean transformation is performed between two
reference systems, one fixed to the airfoil and the other fixed to the
still air at infinity, the elementary classical wave-equation solutions
from acoustics and the solutions of the convected wave equation can
be obtained from the same transformation.

Extensive studies on elementary solutions for both wave and
convected wave equations may be found in the literature [1-3].

If aerodynamic forces and moments on a thin profile are to be
obtained for a given unsteady motion, in principle, there are three
possible ways to solve the problem [4]. The first way is to employ the
results from continuous harmonic time oscillations (obtained by
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standard techniques involving Fourier or Laplace transforms) to the
subsonic, sonic, and supersonic linearized equations of the flow
[1,2]. The second approach is to superimpose indicial aerodynamic
responses by means of the superposition principle embodied in
Duhamel’s integral [2]. In this case the specified boundary
conditions are satisfied both in the space and time domains. The third
way consists of searching for the solution to the wave equation [4—6]
or to the convected wave equation that fits the boundary conditions
prescribed for the given motion [7]. It is precisely this last procedure
that will be presented and discussed in the following paragraphs.
Figure 1 illustrates the studied motion (i.e., a sudden step change in
the angle of attack).

One way to obtain the results for an arbitrary motion based on the
indicial response is the superposition procedure [2,8]. The given
angle-of-attack variation is replaced by a number of small step
changes. It is then apparent in the superposition process that the total
lift at the desired time is equal to the sum of the increments of lift in
each step of time. Another way to obtain an arbitrary motion is by
changing the boundary conditions in the limits of linearized theory
over the chord of the profile according to the desired motion [9]. This
procedure of changing the boundary conditions to obtain an arbitrary
motion has already been studied in an incompressible case [9].

The obtained results in this work are compared with Lomax et al.
[10], who obtained theoretical results for the indicial lift-moment
response for a step change in the angle of attack using an analogy
between three-dimensional steady state and two-dimensional steady
state [5,10]. The calculations are complex and allow theoretical
values only for initial instants; other instants of the domain are
completed with an exponential function. Thus, [10] is the major
reference for comparing results when the subject is step-change
indicial response in subsonic motion.

There are other ways in the literature to obtain the results for a step
change in the angle of attack. Because the theoretical calculations are
extremely complex, approximate functions that can prescribe the
indicial response are studied. The studies of Beddoes [11] and
Leishman [12] are classical, and the first is also used to compare our
results for indicial lift in the subsonic case. Recently, due to
computational advances, there were some results for the indicial
motion obtained by using computational fluid dynamics (CFD) [13—
16]. However, this approach has a very high computational cost
compared with other methods (numerical, as proposed here, or
approximate), taking about four orders of magnitude more
computational time [13].

Mathematical Model

In a reference frame that translates steadily with uniform velocity
U, the perturbation velocity potential due to an arbitrary small-
amplitude motion of a thin airfoil and wake is governed by the
following linear convected wave equation:
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where a,, and M are, respectively, the undisturbed speed of sound
and Mach number. The velocity U is in the positive x direction.

The condition of vanishing relative normal velocity on the airfoil,
which lies on the z = 0 plane and spans over the x axis from the
leading to the trailing edge, is written as

dp 0z, 0z,
wale =5 = T U %

@

where z,, represents the instantaneous small transverse displacement
of the mean camber line and the z axis points upward. To complete
the mathematical model description, the pressure coefficient can be

obtained from
2 (09 da¢p
Cp—‘ﬁ(ﬁ“’a) )

In subsonic flow, the Kutta condition must be imposed at the
trailing edge. From Eq. (3), the pressure coefficient jump Ac, on the
airfoil and wake is obtained as

ey =2 (B o) 208
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where 8¢ stands for the velocity potential difference between the
upper and lower sides. To assure pressure continuity over the trailing
edge and wake, Eq. (4) is written as

D¢ _
D ®

Equation (5) guarantees that §¢ at every point in the wake remains
constant if displaced with the undisturbed velocity of the flow. This
property is, in fact, a linearized version of Kelvin’s theorem and will
be employed in the proposed numerical model to assure that the
Kutta and force-free wake conditions are enforced within the limits
of the linearized theory.

Two solutions of Eq. (1) are employed to solve the problem at
hand. The first solution corresponds to a point vortex of constant
strength I', generated impulsively in an uniform flow at time #,,
which remains fixed at position x (i.e., abound vortex). The velocity
induced by this point vortex along the x axis and z = 0 is given by

r VaZ (1 = 10)* —[(x — xo) = U(1 — 1)
2mas, (t — ty) (x — xo)

w(x,t) =—

(6)
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Fig. 2 Relationships existent between a vortex pair and the potential
jump along the line that joins them.

The second solution is a free vortex that is convected by the flow
with uniform velocity U, for which the inducing effect is

r Vai (1 —19)> = [(x — xp) — U(t — 1,)]?

) = = To) (r = xo) = Ut =1o)
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and for which the solution is employed in the subsonic regime to
satisfy the Kutta condition and to build in the free vortex sheet
downstream of the trailing edge. If the flow is supersonic, only the
real part of w(x, #) must be taken into account for both bound and free
vortices.

Solutions such as Eqgs. (6) and (7) can be obtained in many ways.
The most straightforward method is to take into account the formal
analogy that exists between the two-dimensional wave equation,
written for a fluid at rest, and the steady three-dimensional supersonic
flow [2]. The semi-infinite line vortex that extends downstream in a
steady supersonic flow is equivalent to the two-dimensional point
vortex that spreads radially in a fluid at rest. Further applications of a
Galilean transformation allow the final formulas, as in Eqgs. (6) and
(7). The well-known relationships existent between a vortex pair and
the potential jump along the line that joins them are also verified in
the unsteady compressible potential flow (see Fig. 2).

Numerical Model

The motion always begins from an impulsive start at t = 0 after the
application of boundary conditions on the airfoil chord. The
sequence of events of the proposed numerical procedure is
summarized as follows.

Initially, the airfoil chord is divided in a convenient number of
small and equally spaced panels. Over each panel, an unknown
constant density normal dipole distribution is assumed. Atz = dr/2,
each dipole panel is replaced by its counter-rotating vortex pair
placed at its edges. This arrangement automatically satisfies Kelvin’s
circulation theorem from the very start of motion. Taking into
account the finiteness of the disturbance propagations, the induced
velocities at control points (considering vortices of unitary strengths)
are calculated from Eq. (6), and an influence coefficient matrix is
constructed in an exact analogy to the classical vortex lattice method.
After solving the linear system, for which the second member is
composed of the boundary conditions, Eq. (2), the vortex intensities
are obtained.

There are two main remarkable differences when comparing with
the incompressible case. First, in the present case, each vortex does
not affect all control points for a given time, but only those that are
near it. In fact, the influence range is greater as the Mach number is
lower. In the supersonic regime, only control points that are
downstream of a given vortex are affected by it. This property is
contained in elementary solutions given by Eqs. (6) and (7). The
second difference is that for the terms that are located at the main
diagonal of the influence coefficient matrix, an additional term taken
from piston theory [2],

M
T2t ®

w(x, 8¢ =1)
must be added in an analogy to what is done in supersonic vortex
lattice method [17].

During the elapsed time interval d¢, the trailing-edge bound vortex
becomes free in subsonic flow and is shed with undisturbed flow
velocity. This mechanism satisfies the Kutta condition.
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Fig. 3 Numerical scheme for subsonic case: a)k =1,b)k =2,and ¢) k = N.

At the next time step ¢ = (dt/2) + df, a new constant density
normal dipole distribution is superimposed on the former vortex
system, which is again replaced by a counter-rotating vortices pair,
and boundary conditions are enforced again. The newly created
vortex at the trailing edge in subsonic flow is shed, as was the older
one during time interval dz. This procedure generates a free wake in
the form of a row of adjacent discrete vortices. In supersonic flow, all
vortices are tied to the airfoil. Although vorticity might be shed, if
circulation changes over the airfoil, its influence is then zero, because
all control points are situated upstream of the shed wake.

After each time step, the pressure-jump distribution, lifting force,
and pitching moment coefficients can be calculated as functions of
time from direct application of Eq. (4).

The numerical scheme is shown in Fig. 3 for the subsonic motion.
It is possible to visualize the same time domain by considering the
time as an axis. This scheme permits clearer understanding of the
similarity to the vortex lattice method and is shown in Fig. 4.

Results

The proposed numerical method was employed to obtain the load
distribution and the lift coefficient time variation for a sudden change
of the angle of attack of a flat plate in an otherwise steady uniform
flow. This problem is, in fact, a very demanding one for any
numerical method and is the only well-documented case that can be
used to validate a scheme specifically designed to treat an arbitrary
motion.

In Fig. 5, the load distribution per angle of attack in subsonic flow
is shown for three different instants of time. The singularity at the
leading edge is apparent even for Ut/c = 0.2, that is, at the very start

of the process. Also apparent is the vanishing of the load at the
trailing edge. The overall agreement with the Lomax data [10] is
quite good. In Fig. 6, the time evolution of the lift coefficient is
presented for two subsonic Mach numbers. The starting range,
roughly until the plate moves two chords, is remarkably well-
described by the present numerical method.

The supersonic solutions are also presented in Figs. 7 and 8. In
Fig. 7, for the least instant of time, the rear part of the flat plate is still
under the influence of the uniform load from time ¢ > 0, whereas the
front end is already caught by waves generated from the leading
edge. On the other hand, after 1.5 Ut/c, most of the profile chord
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Fig. 4 Numerical scheme considering time as an axis showing the
vortex lattice appearance.
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Fig. 5 Variation of two-dimensional indicial load distribution per
radian with percent chord; Mach number M = 0.8, chord discretization

n =100, and time step d¢ = 0.01.
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Fig. 6 Variation of two-dimensional indicial lift coefficient per radian

with chord lengths traveled, for subsonic motion; n =100 and
dt = 0.005.

load has already reached the steady-state value. In Fig. 8, two
supersonic solutions are compared with the analytical solutions [10].
The reader can observe that the distributions are practically
coincident.

In Figs. 9 and 10, the load distribution per angle of attack in
subsonic and supersonic flows is shown along the time traveled. It is
remarkable that the same characteristics are observed in Figs. S and 7,
although in a continuous way, along the time traveled. In subsonic
flow, Fig. 9 shows the variation of two-dimensional indicial load
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Fig. 7 Variation of two-dimensional indicial load distribution per

radian with percent chord; M = 2.0, n = 50, and d¢ = 0.02.
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Fig. 8 Variation of two-dimensional indicial lift coefficient per radian

with chord lengths traveled for supersonic Mach numbers; n = 50 and
dt = 0.02.

distribution per radian along the traveled time for M = 0.5. Note that
there is a predominant nonsteady region (Ut/c¢ < 1) followed by a
well-defined standard region (Ut/c > 1) in which only the growing
circulating portion exists and the load distribution already appears as
a steady flow. In the supersonic case, Fig. 10 shows the variation of
two-dimensional indicial load distribution per radian along the
traveled time for M = 2.0. It is evident that the three typical load
curves are the same as those already observed in Fig. 7 and the flow
achieves steady flow at Ut/c = M /(M — 1).
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Fig. 9 Variation of two-dimensional indicial load distribution per
radian along the traveled time; M = 0.5, n = 50, and d¢ = 0.01.
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Conclusions

The numerical method presented here is, in fact, the natural
extension of the compressible regime of the classical vortex lattice
method in its two-dimensional version.

The main physical difference is the finiteness of the disturbances’
propagations. The correspondence between vortex and normal
dipole panels with constant density, as well as the concepts of bound
and free vortices, remains valid in both subsonic and supersonic
regimes and is an essential feature of the proposed numerical scheme.

The vantage of this method when compared with others is that it is
possible to calculate the loads and forces over the profile and over the
profile neighborhood too, such as a CFD calculation, at a low
computational cost. And in the approximate methods based on

exponential functions, it is not possible to obtain the loads over the
profile, only the forces.

The proposed method is the first to use a simple numerical scheme
to obtain forces and loads for an arbitrary motion of a profile in the
unsteady compressible domain. To validate the method, a step
change of the angle of attack (an indicial motion) was calculated. An
arbitrary motion can be obtained using a superposition process or
simply by changing the boundary conditions, because it is a
numerical scheme. Using this method, it is possible to obtain results
for many important motions in applied aerodynamics, such as sharp-
edged gust and airfoil-vortex interaction, which is very important for
the study of the helicopter noise and cosine gust used in the
development of the actual civil aircraft.
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